1(i)	$\mathrm{P}(\text { Correct forecast })=\frac{55+128+81}{365}=\frac{264}{365}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Numerator
(ii)	P (Correct forecast given sunny forecast)		
	$=\frac{55}{75}=0.733$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Denominator
(iii)	P (Correct forecast given wet weather)		
	$=\frac{81}{117}=0.692$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Denominator
(iv)	P (Cloudy weather given correct forecast)		
	$=\frac{128}{264}=0.485$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Denominator

2	(i)	(B)	$\begin{aligned} & P(\text { Exactly } 20 \text { cured })=\binom{20}{20} \times 0.78^{20} \times 0.22^{0}=0.0069 \\ & P(\text { At most } 18 \text { cured })=1-(0.0069+0.0392) \\ & =0.954(0.95385) \end{aligned}$	M1 M1 A1 [3]	For 0.78^{20} oe For $\mathrm{P}(19)+\mathrm{P}(20)$ CAO	Allow M2 for 0.9488 for linear interpolation from tables or M1 for 1 $-0.9918=0.0082$ and second M1 for correct FT using answer to (i)(A) Zero for use of $p=0.8$ here Not necessarily correct, but both attempts at binomial, including coefficient in (i) and no extra terms (such as $\mathrm{P}(X=18)$) Condone use of $p=0.8$ Allow 0.95 with working
	(i)	(C)	$\mathrm{E}(X)=n p=20 \times 0.78=15.6$	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	CAO	Do not allow final answer of 15 or 16 even if correct 15.6 given earlier
	(ii)		Let $X \sim \mathrm{~B}(20,0.78)$ Let $p=$ probability of a patient being cured (for population) $\begin{aligned} & \mathrm{H}_{0}: p=0.78 \\ & \mathrm{H}_{1}: p>0.78 \end{aligned}$	B1 B1 B1	For definition of p For H_{0} For H_{1}	In context See below for additional notes No further marks if point probabilities

PhysicsAndMathsTutor.com

Question			Answer	Marks		Guidance
			$\mathrm{P}(X \geq 20)=0.0069<1 \%$ So critical region is $\{20\}$ (19 not in CR so) not significant. Conclude that there is not enough evidence to suggest that the new drug is more effective than the old one.	M1 B1* A1* dep E1* dep	For at least one comparison with 1% CAO dep on the two correct probabilities Dep on correct CR Ignore any work on lower critical region	Allow comparison in form of statement 'critical region at 1% level is ...' No marks if CR not justified Condone $X \geq 20, X=20$, oe but not $\mathrm{P}(X \geq 20$, etc Allow 'accept H_{0} ' or 'reject H_{1} '
2	(iii)		With a 5\% significance level rather than a 1% level, the null hypothesis would have been rejected. OR: 'there would be enough evidence to suggest that the new drug is more effective than the old one.' This is because $0.0461<5 \%$	B1* B1* dep [2]	oe	FT their probability from (ii) but NO marks if point probabilities used There must be a sensible attempt to use $\mathrm{P}(X=19)+\mathrm{P}(X=20)$ or must have correct CR. Dep on correct answer of 0.0461 compared with 5% or 0.9539 compared with 95% or correct CR.

Question			Answer	Marks	Guidance	
3	(i)	(A)	$\begin{aligned} & X \sim \mathrm{~B}(10,0.35) \\ & \mathrm{P}(5 \text { accessing internet })=\binom{10}{5} \times 0.35^{5} \times 0.65^{5} \\ & =0.1536 \end{aligned}$ OR from tables $=0.9051-0.7515=0.1536$	M1 M1 A1 OR M2 A1 [3]	or $0.35^{5} \times 0.65^{5}$ For $\binom{10}{5} \times p^{5} \times q^{5}$ cao For $0.9051-0.7515$ cao	With $p+\boldsymbol{q}=\mathbf{1}$ Also for 252×0.0006094 Allow 0.15 or better NB 0.153 gets A0 See tables at the website http://www.mei.org.uk/files/pdf/formu la book mf2.pdf
	(i)	(B)	$\begin{aligned} & \mathrm{P} X \geq 5)=1-\mathrm{P}(X \leq 4) \\ & =1-0.7515 \\ & =0.2485 \end{aligned}$	M1 A1 [2]	For 0.7515 cao	Accept 0.25 or better - allow 0.248 or 0.249 Calculation of individual probabilities gets B2 if fully correct 0.25 or better, otherwise B0.
	(i)	(C)	$\begin{aligned} & \mathrm{E}(X)=n p=10 \times 0.35 \\ & =3.5 \end{aligned}$	M1 A1 [2]	For 10×0.35 cao	If any indication of rounding to 3 or 4 allow M1A0

